Tantalum Cobalt Nitride Photocatalysts for Water Oxidation under Visible Light

نویسندگان

  • Yanqing Cong
  • Hyun S. Park
  • Hoang X. Dang
  • Fu-Ren F. Fan
  • Allen J. Bard
  • Buddie Mullins
چکیده

Tantalum cobalt nitride photocatalysts were prepared using a simple drop coating method on a Ta foil substrate followed by thermal ammonia treatment, and their photoelectrochemical (PEC) properties for water oxidation under visible light were studied. The resulting Ta0.9Co0.1Nx films showed a photocurrent of ca. 1.5 mA/cm (12 times higher than that of Ta3N5) under 100 mW/cm visible light irradiation at 0.7 V vs Ag/AgCl in a 0.1 M Na2SO4 aqueous solution (pH 11). The good PEC performance was attributed to the introduction of cobalt and the formation of cobalt nitride, which efficiently facilitates electron transfer and suppresses the recombination of photogenerated electron−hole pairs. Some cobalt nitride could further be oxidized to generate cobalt oxide, which serves as an efficient electrocatalyst for water oxidation. The enhanced visible light activity and film stability under light irradiation make tantalum cobalt nitride a promising semiconductor for PEC water oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation

Tantalum nitride (Ta3N5) is a promising material for photoelectrochemical (PEC) water oxidation with a narrow band gap (2.1 eV) that can effectively utilize visible light in the solar spectrum. Ta3N5 nanotube (NT) arrays were synthesized on a Ta foil by electrochemical anodization followed by an ammonia treatment at 800 °C. The photocurrent of nanostructured Ta3N5 was over 3 times higher than t...

متن کامل

Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation.

The physicochemical properties of a tantalum nitride (Ta3N5) photoanode were investigated in detail to understand the fundamental aspects associated with the photoelectrochemical (PEC) water oxidation. The Ta3N5 thin films were synthesized using DC magnetron sputtering followed by annealing in air and nitridation under ammonia (NH3). A polycrystalline structure with a dense morphology of the mo...

متن کامل

Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO₂N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO₂N photoanodes....

متن کامل

Nanostructured Ta3N5 Films as Visible-Light Active Photoanodes for Water Oxidation

Nanostructured Ta3N5 photoanodes (band gap of ∼2.0 eV) were synthesized via a two-step process: first, nanocolumnar Ta2O5 films were deposited by evaporation of tantalum metal in a vacuum chamber in a low pressure oxygen ambient followed by heating in an ammonia gas flow to convert Ta2O5 into orthorhombic Ta3N5. Under Xe lamp irradiation (∼73 mW/cm), a 100 nm nanoporous Ta3N5 electrode achieved...

متن کامل

Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions.

TiO2 (band gap = 3.0 eV) and SrTiO3 (band gap = 3.2 eV) codoped with nickel and either tantalum or niobium ions showed photocatalytic activities for O2 evolution from an aqueous silver nitrate solution and H2 evolution from an aqueous methanol solution under visible light irradiation (lambda > 420 nm). The visible-light responses were due to the charge-transfer transition from the electron dono...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012